Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Genomic Analysis of the GRF Genes in Chinese Pear (Pyrus bretschneideri Rehd), Poplar (Populous), Grape (Vitis vinifera), Arabidopsis and Rice (Oryza sativa).

Identifieur interne : 001961 ( Main/Exploration ); précédent : 001960; suivant : 001962

Comparative Genomic Analysis of the GRF Genes in Chinese Pear (Pyrus bretschneideri Rehd), Poplar (Populous), Grape (Vitis vinifera), Arabidopsis and Rice (Oryza sativa).

Auteurs : Yunpeng Cao [République populaire de Chine] ; Yahui Han [République populaire de Chine] ; Qing Jin [République populaire de Chine] ; Yi Lin [République populaire de Chine] ; Yongping Cai [République populaire de Chine]

Source :

RBID : pubmed:27933074

Abstract

Growth-regulating factors (GRFs) are plant-specific transcription factors that have important functions in regulating plant growth and development. Previous studies on GRF family members focused either on a single or a small set of genes. Here, a comparative genomic analysis of the GRF gene family was performed in poplar (a model tree species), Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots), rice (a model plant for monocots) and Chinese pear (one of the economical fruit crops). In total, 58 GRF genes were identified, 12 genes in rice (Oryza sativa), 8 genes in grape (Vitis vinifera), 9 genes in Arabidopsis thaliana, 19 genes in poplar (Populus trichocarpa) and 10 genes in Chinese pear (Pyrus bretschneideri). The GRF genes were divided into five subfamilies based on the phylogenetic analysis, which was supported by their structural analysis. Furthermore, microsynteny analysis indicated that highly conserved regions of microsynteny were identified in all of the five species tested. And Ka/Ks analysis revealed that purifying selection plays an important role in the maintenance of GRF genes. Our results provide basic information on GRF genes in five plant species and lay the foundation for future research on the functions of these genes.

DOI: 10.3389/fpls.2016.01750
PubMed: 27933074
PubMed Central: PMC5121280


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Genomic Analysis of the
<i>GRF</i>
Genes in Chinese Pear (
<i>Pyrus bretschneideri Rehd</i>
), Poplar (
<i>Populous</i>
), Grape (
<i>Vitis vinifera</i>
),
<i>Arabidopsis</i>
and Rice (
<i>Oryza sativa</i>
).</title>
<author>
<name sortKey="Cao, Yunpeng" sort="Cao, Yunpeng" uniqKey="Cao Y" first="Yunpeng" last="Cao">Yunpeng Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Yahui" sort="Han, Yahui" uniqKey="Han Y" first="Yahui" last="Han">Yahui Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Qing" sort="Jin, Qing" uniqKey="Jin Q" first="Qing" last="Jin">Qing Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yi" sort="Lin, Yi" uniqKey="Lin Y" first="Yi" last="Lin">Yi Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cai, Yongping" sort="Cai, Yongping" uniqKey="Cai Y" first="Yongping" last="Cai">Yongping Cai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27933074</idno>
<idno type="pmid">27933074</idno>
<idno type="doi">10.3389/fpls.2016.01750</idno>
<idno type="pmc">PMC5121280</idno>
<idno type="wicri:Area/Main/Corpus">001528</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001528</idno>
<idno type="wicri:Area/Main/Curation">001528</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001528</idno>
<idno type="wicri:Area/Main/Exploration">001528</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Genomic Analysis of the
<i>GRF</i>
Genes in Chinese Pear (
<i>Pyrus bretschneideri Rehd</i>
), Poplar (
<i>Populous</i>
), Grape (
<i>Vitis vinifera</i>
),
<i>Arabidopsis</i>
and Rice (
<i>Oryza sativa</i>
).</title>
<author>
<name sortKey="Cao, Yunpeng" sort="Cao, Yunpeng" uniqKey="Cao Y" first="Yunpeng" last="Cao">Yunpeng Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Yahui" sort="Han, Yahui" uniqKey="Han Y" first="Yahui" last="Han">Yahui Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Qing" sort="Jin, Qing" uniqKey="Jin Q" first="Qing" last="Jin">Qing Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yi" sort="Lin, Yi" uniqKey="Lin Y" first="Yi" last="Lin">Yi Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cai, Yongping" sort="Cai, Yongping" uniqKey="Cai Y" first="Yongping" last="Cai">Yongping Cai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Anhui Agricultural University Hefei</wicri:regionArea>
<wicri:noRegion>Anhui Agricultural University Hefei</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Growth-regulating factors (GRFs) are plant-specific transcription factors that have important functions in regulating plant growth and development. Previous studies on GRF family members focused either on a single or a small set of genes. Here, a comparative genomic analysis of the
<i>GRF</i>
gene family was performed in poplar (a model tree species),
<i>Arabidopsis</i>
(a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots), rice (a model plant for monocots) and Chinese pear (one of the economical fruit crops). In total, 58
<i>GRF</i>
genes were identified, 12 genes in rice (
<i>Oryza sativa</i>
), 8 genes in grape (
<i>Vitis vinifera</i>
), 9 genes in
<i>Arabidopsis thaliana</i>
, 19 genes in poplar (
<i>Populus trichocarpa</i>
) and 10 genes in Chinese pear (
<i>Pyrus bretschneideri</i>
). The
<i>GRF</i>
genes were divided into five subfamilies based on the phylogenetic analysis, which was supported by their structural analysis. Furthermore, microsynteny analysis indicated that highly conserved regions of microsynteny were identified in all of the five species tested. And Ka/Ks analysis revealed that purifying selection plays an important role in the maintenance of
<i>GRF</i>
genes. Our results provide basic information on
<i>GRF</i>
genes in five plant species and lay the foundation for future research on the functions of these genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27933074</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Genomic Analysis of the
<i>GRF</i>
Genes in Chinese Pear (
<i>Pyrus bretschneideri Rehd</i>
), Poplar (
<i>Populous</i>
), Grape (
<i>Vitis vinifera</i>
),
<i>Arabidopsis</i>
and Rice (
<i>Oryza sativa</i>
).</ArticleTitle>
<Pagination>
<MedlinePgn>1750</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Growth-regulating factors (GRFs) are plant-specific transcription factors that have important functions in regulating plant growth and development. Previous studies on GRF family members focused either on a single or a small set of genes. Here, a comparative genomic analysis of the
<i>GRF</i>
gene family was performed in poplar (a model tree species),
<i>Arabidopsis</i>
(a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots), rice (a model plant for monocots) and Chinese pear (one of the economical fruit crops). In total, 58
<i>GRF</i>
genes were identified, 12 genes in rice (
<i>Oryza sativa</i>
), 8 genes in grape (
<i>Vitis vinifera</i>
), 9 genes in
<i>Arabidopsis thaliana</i>
, 19 genes in poplar (
<i>Populus trichocarpa</i>
) and 10 genes in Chinese pear (
<i>Pyrus bretschneideri</i>
). The
<i>GRF</i>
genes were divided into five subfamilies based on the phylogenetic analysis, which was supported by their structural analysis. Furthermore, microsynteny analysis indicated that highly conserved regions of microsynteny were identified in all of the five species tested. And Ka/Ks analysis revealed that purifying selection plays an important role in the maintenance of
<i>GRF</i>
genes. Our results provide basic information on
<i>GRF</i>
genes in five plant species and lay the foundation for future research on the functions of these genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Yunpeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Yahui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cai</LastName>
<ForeName>Yongping</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Anhui Agricultural University Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GRF</Keyword>
<Keyword MajorTopicYN="N">gene duplication</Keyword>
<Keyword MajorTopicYN="N">gene structure</Keyword>
<Keyword MajorTopicYN="N">microsynteny</Keyword>
<Keyword MajorTopicYN="N">molecular evolution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27933074</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.01750</ArticleId>
<ArticleId IdType="pmc">PMC5121280</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2000 May;12(5):637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10810140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Feb;23(2):396-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13374-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jul;45(7):897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Oct;23(10):1937-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Dec;16(12):1664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Nov;29(4):691-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8541496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Jan 1;533(1):218-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24285851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):817-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25604530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(1):94-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12974814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Dec;278(6):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17665215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 29;7:577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2016 Oct 19;7(10 ):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27775579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 21;9(7):e102825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25047803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Sep 22;15:807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25242257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2015 Sep 08;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26350041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Aug;15(8):4240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7623818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Apr;16(4):510-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jan 27;17 (2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jul;30(7):1713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2008 Aug;15(4):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 03;9(10):e109920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25279462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Jun;27(6):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12069792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Oct 03;13:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24088323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cao, Yunpeng" sort="Cao, Yunpeng" uniqKey="Cao Y" first="Yunpeng" last="Cao">Yunpeng Cao</name>
</noRegion>
<name sortKey="Cai, Yongping" sort="Cai, Yongping" uniqKey="Cai Y" first="Yongping" last="Cai">Yongping Cai</name>
<name sortKey="Han, Yahui" sort="Han, Yahui" uniqKey="Han Y" first="Yahui" last="Han">Yahui Han</name>
<name sortKey="Jin, Qing" sort="Jin, Qing" uniqKey="Jin Q" first="Qing" last="Jin">Qing Jin</name>
<name sortKey="Lin, Yi" sort="Lin, Yi" uniqKey="Lin Y" first="Yi" last="Lin">Yi Lin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001961 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001961 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27933074
   |texte=   Comparative Genomic Analysis of the GRF Genes in Chinese Pear (Pyrus bretschneideri Rehd), Poplar (Populous), Grape (Vitis vinifera), Arabidopsis and Rice (Oryza sativa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27933074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020